top of page
Updated Large Logo.png
Autologous NK Cell

A major goal of our research focuses on finding better and safer treatments for cancer, particularly for those for which we have no or very limited treatment options. Our natural immune system protects us from growth of cancerous cells. One of the most important innate cell types responsible for natural defense against cancer cells is the natural killer (NK) cell. When cancer cells evade NK cell-mediated destruction, the result is tumor formation. Established tumors can not only reduce NK cell numbers but also significantly inhibit their function, further hindering the immune system’s ability to eliminate the tumor. Therefore, finding a method to increase the number and function of NK cells in cancer patients could provide a safe and effective cancer treatment, particularly for cancers where limited treatment options are available, such as triple negative breast cancers and lung cancers.

"Our research focuses on finding better and safer treatments for cancer"

Critical to improving the activity of the innate immune system is having large numbers of sufficiently activated NK cells which are capable of killing cancer cells. Our laboratory is now able to generate large numbers of NK cells from a small amount of blood collected from cancer patients. Furthermore, we can stimulate these cells through unique protocols to produce highly active cancer killing NK cells. Therefore, it is possible that if these highly active NK cells from a cancer patient were injected back into the same patient (termed autologous NK cell therapy), cancers could be cleared, returning the individual to a healthy lifestyle. Recognizing the potential of NK cells as a cancer therapeutic, the immediate goal of our laboratory is to push autologous NK cell therapies into clinical trials.

Innate Immunity

The innate immune system is a critical component in combating infection. It provides a quick initial immune response to bacterial or viral challenges and shapes and stimulates the adaptive immune response that is ultimately responsible for clearing the infection. As the repertoire of cells and cytokines in the innate immune environment is vast and diverse, a few areas have become prominent research focal points within our lab.

Screen Shot 2018-07-30 at 2.30.28 PM.png

Interleukin-15:

We are currently investigating the signalling pathway of IL-15 and its effects on the innate immune environment during viral infection. While it is well-known that IL-15 signals through lymphocytes through a trans-presentation mechanism, in which IL-15 is presented by IL-15 receptor-α to the IL-2β  and common-γ-chain receptors on lymphocytes, a different mechanism of IL-15 signalling and activation may be occurring in immune cells of myeloid lineage. As a widely expressed cytokine with a crucial impact during infection, research that focuses on understanding IL-15 will have fundamental impacts on health and human disease.

 

Natural Killer Cells:

We are exploring the antiviral effect of natural killer cells in response to a number of viral infections, including influenza and HSV-2. We are particularly interested in the mechanisms that maintain, activate, and regulate natural killer cells in the context of viral infection.

bottom of page